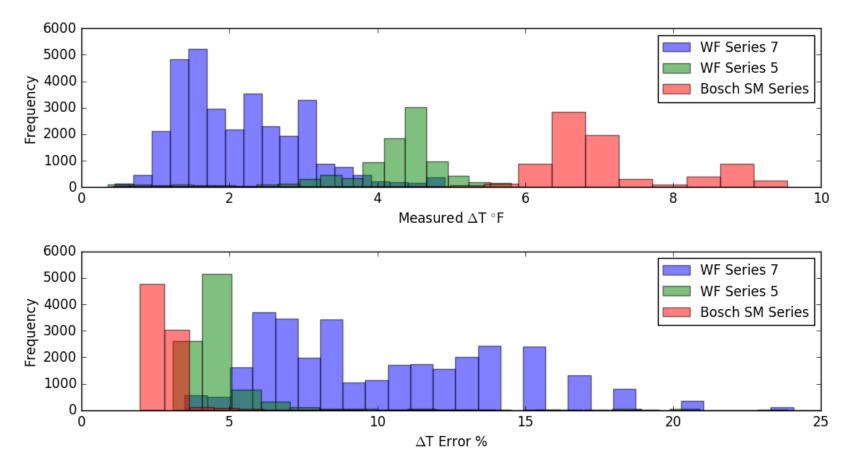
Needs and Opportunities to Improve RHC Performance Metrics

Ground Source Heat Pumps: Challenges and Opportunities

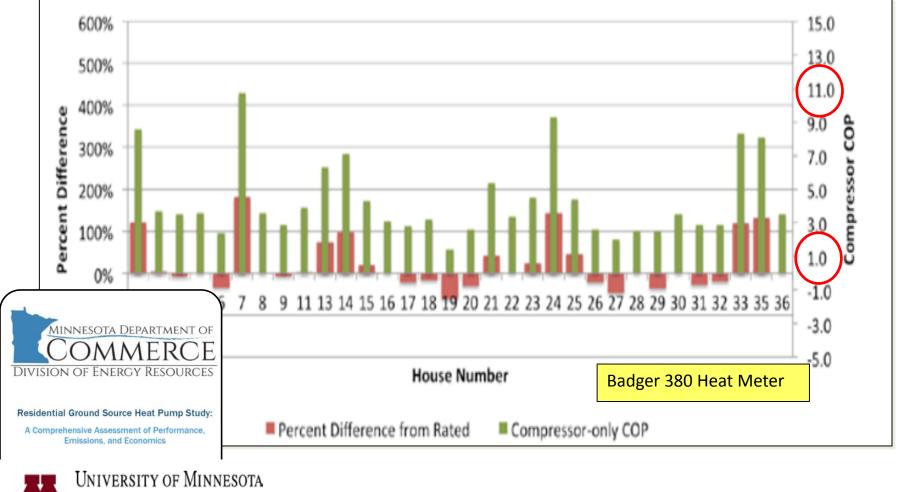
> J. Matthew Davis University of New Hampshire Ground Energy Support LLC

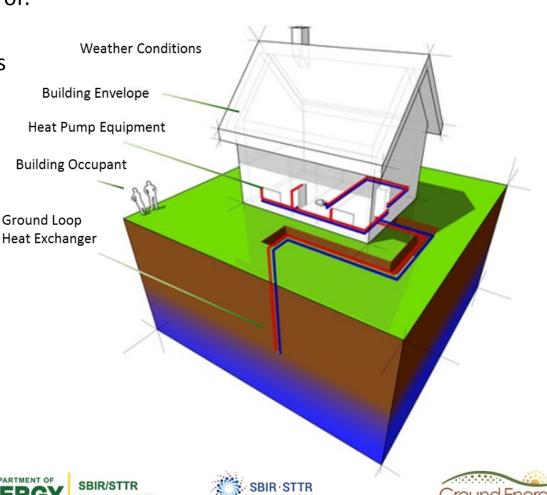


Renewable Heating & Cooling Workshop

JUN 18-19 // SARATOGA SPRINGS, NY

The problem with COP....

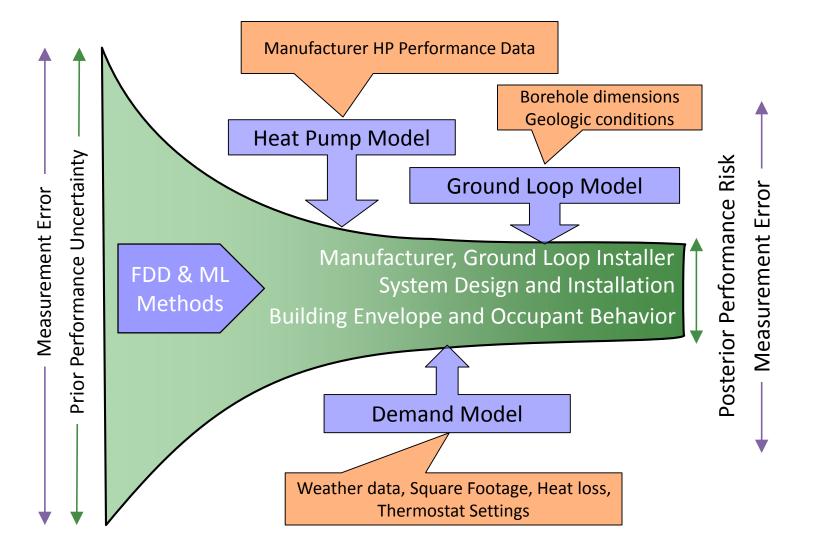

ΔT and corresponding error depends on: heat pump equipment, system design, and installation


The problem with COP....

. Driven to Discover[™]

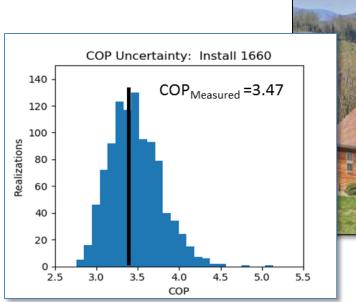
Rethink EM&V for Ground Source Heat Pump Systems

- Overreliance on 'COP'
 - Relies upon measurements of:
 - q, ΔT , kW
- Consider all system components
 - Heat pump equipment
 - Ground loop
 - Building envelope —
 - System design
 - User operation
 - Weather conditions
- Uncertainty and Risk
- Need quantitative performance metrics with risk attribution



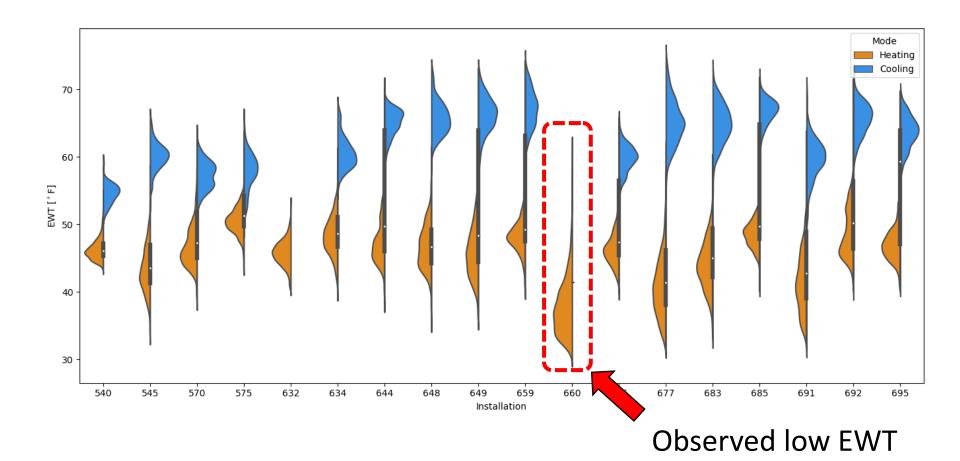
GHP System Components

Conceptual Framework – the Hypothesis



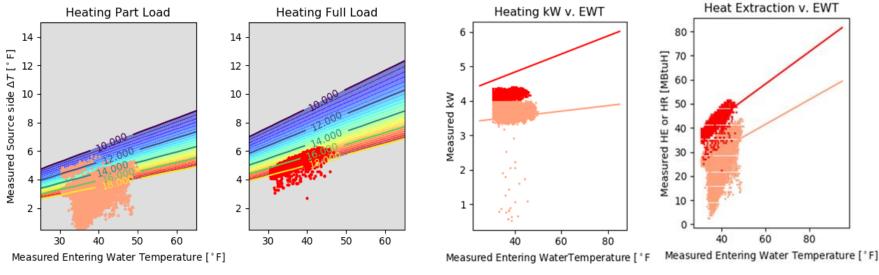
Example Analysis: Single Family Ranch House Coos County NH

- COP appears to be below expected
- Potential factors:
 - Heat pump
 - Ground loop
 - Building
 - Occupant



Hourly Entering Water Temperature (EWT) for Heating and Cooling Modes

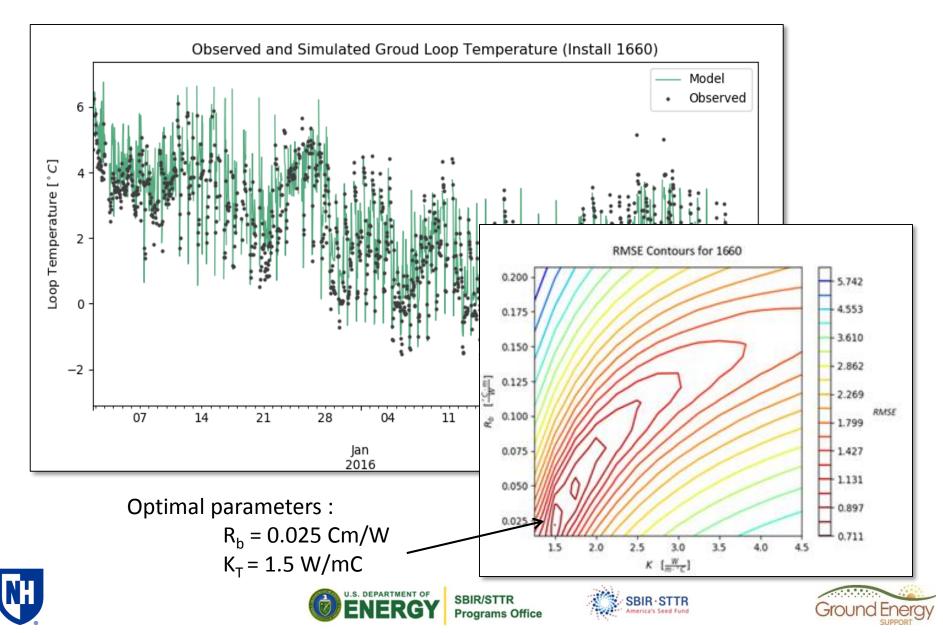
Selected GES installations Calendar Year 2016

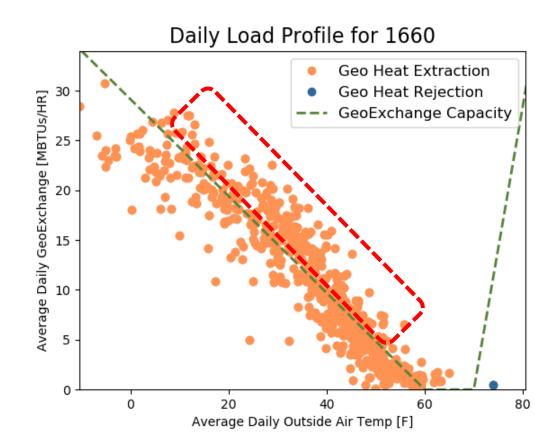


Heat Pump Model

			,	CFM Cooling / 1050 CFM Heating							Cooling								
WT	Flow	W	PD	Aiflow	HC	HE	LAT		COP	DH	Aiflow	TC	SC	000	HR		EER	DH	
٩F	GPM	PSI	FT	CFM	MBtuh	MBtuh	°E	kW	W/W	MBtuh	CEM	MBtuh		S/T	MBtuh	kW		MBtuh	
				1050	17.3	11.9	85.3	1.58	3.21	2.3	0.11			071			brad it		
25	7.0	2.5	5.8	950	16.8	11.2	86.4	1.63	3.02	2.2									
				1050	18.6	13.2	86.4	1.59	3.43	2.5									
	5.0	1.4	3.3	950	18.1	12.5	87.6	1.65	3.21	2.4									
	6.0	1.9	4.4	1050	18.8	13.4	86.6	1.59	3.46	2.5									
	6.0	1.9		950	18.3	12.7	87.8	1.65	3.25	2.4									
	7.0	2.4	5.5	1050	18.8	13.4	86.6	1.59	3.46	2.5		Operation Not Recommended							
				950	18.3	12.7	87.8	1.65	3.25	2.4			Operatio	on Not I	Recomm	ended			
40	5.0	1.3	3.0	1050	22.0	16.5	89.4	1.62	3.98	2.9									
				950	21.4	15.7	90.9	1.68	3.73	2.9									
	6.0	1.7	3.9	1050	22.2	16.7	89.6	1.62	4.02	2.9									
	6.0			950	21.7	16.0	91.2	1.68	3.78	2.9									
	7.0	2.2	5.0	1050	22.4	16.9	89.8	1.62	4.05	2.9									
	7.0	2.2	5.0	950	21.8	16.1	91.2	1.68	3.80	3.1									
	5.0	1.2	2.7	1050	25.5	19.9	92.5	1.65	4.53	3.4	1050	32.0	22.2	0.69	35.6	1.06	30.2	2.7	
				950	24.8	19.0	94.2	1.71	4.25	3.3	950	30.8	20.7	0.67	34.5	1.07	28.8	2.5	
60	6.0	1.6	3.6	1050	25.7	20.1	92.7	1.65	4.56	3.4	1050	32.3	22.2	0.69	35.8	1.03	31.4	2.5	
50	0.0	1.0	5.0	950	25.0	19.2	94.4	1.71	4.28	3.3	950	31.2	20.7	0.66	34.8	1.05	29.7	2.3	
	7.0	2.0	0 4.6	1050	25.9	20.3	92.8	1.65	4.60	3.4	1050	32.7	22.4	0.69	36.1	1.01	32.4	2.4	
	7.0			950	25.2	19.4	94.6	1.71	4.32	3.3	950	31.5	20.9	0.66	35.0	1.03	30.6	2.2	
	5.0	1.1	2.5	1050	28.7	23.0	95.3	1.67	5.04	3.8	1050	30.2	21.4	0.71	34.3	1.21	25.0	3.2	
				950	28.0	22.1	97.3	1.73	4.74	3.8	950	29.1	20.0	0.69	33.3	1.23	23.7	3.0	
	6.0	1.5	3.4	1050	29.0	23.3	95.6	1.68	5.06	3.8	1050	30.5	21.5	0.70	34.5	1.18	25.8	3.0	
	0.0			950	28.3	22.4	97.6	1.73	4.79	3.8	950	29.5	20.0	0.68	33.6	1.20	24.6	2.8	
	7.0	1.0	43	1050	29.2	23.5	95.7	1.68	5.09	3.8	1050	30.9	21.6	0.70	34.9	1.16	26.6	2.9	

	е. Шп	ydron_HX	T_036_PL									
	index	EWT [F]	Flow [GPM]	WPD [PSI]	Aiflow [CFM]	HC [Mbtuh]	HE [Mbtuh]	LAT [F]	HE kW	COP	DH [Mbtuh]	Aiflow
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
1	0	25.0	7.0	2.5	1050	17.3	11.9	85.3	1.58	3.21	2.3	NULL
2	1	25.0	7.0	NULL	950	16.8	11.2	86.4	1.63	3.02	2.2	NULL
3	2	30.0	5.0	1.4	1050	18.6	13.2	86.4	1.59	3.43	2.5	NULL
4	3	30.0	5.0	NULL	950	18.1	12.5	87.6	1.65	3.21	2.4	NULL
5	4	30.0	6.0	1.9	1050	18.8	13.4	86.6	1.59	3.46	2.5	NULL
6	5	30.0	6.0	NULL	950	18.3	12.7	87.8	1.65	3.25	2.4	NULL
7	6	30.0	7.0	2.4	1050	18.8	13.4	86.6	1.59	3.46	2.5	NULL
8	7	30.0	7.0	NULL	950	18.3	12.7	87.8	1.65	3.25	2.4	NULL
9	8	40.0	5.0	1.3	1050	22.0	16.5	89.4	1.62	3.98	2.9	NULL
10	9	40.0	5.0	NULL	950	21.4	15.7	90.9	1.68	3.73	2.9	NULL
11	10	40.0	6.0	1.7	1050	22.2	16.7	89.6	1.62	4.02	2.9	NULL
12	11	40.0	6.0	NULL	950	21.7	16.0	91.2	1.68	3.78	2.9	NULL
13	12	40.0	7.0	2.2	1050	22.4	16.9	89.8	1.62	4.05	2.9	NULL
14	13	40.0	7.0	NULL	950	21.8	16.1	91.2	1.68	3.8	3.1	

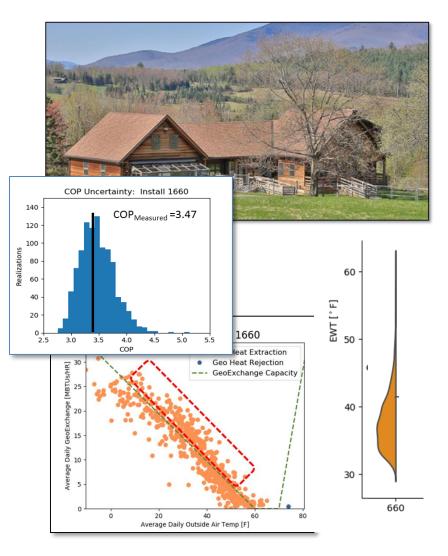



Ground Loop Model

Demand Model

Demand on ground loop for heat appears to be greater than design.

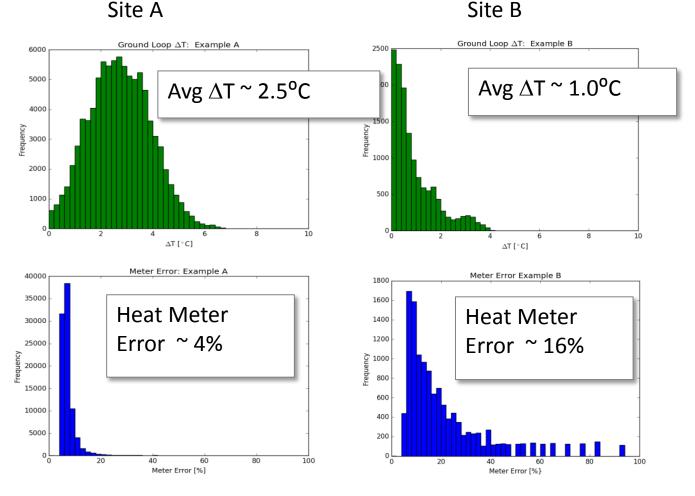
No cooling enhances annual imbalance (NAGL).

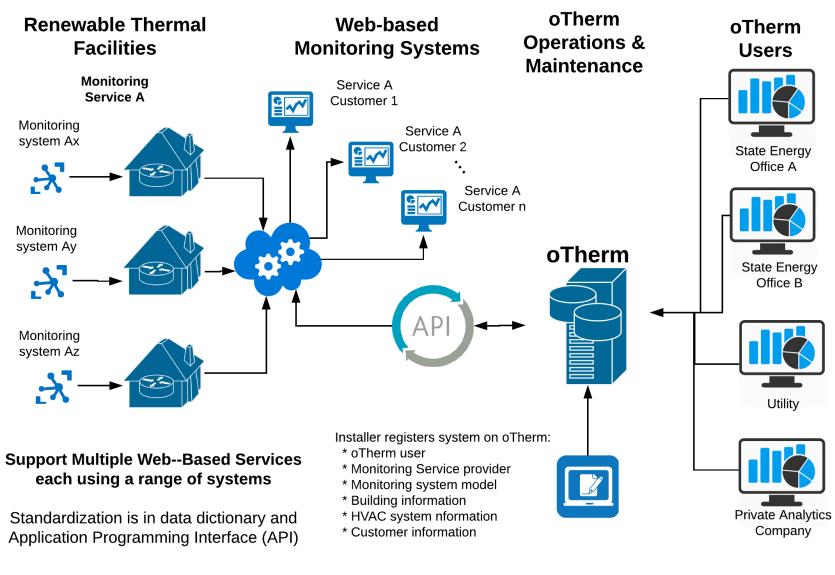


Performance of Site 1660

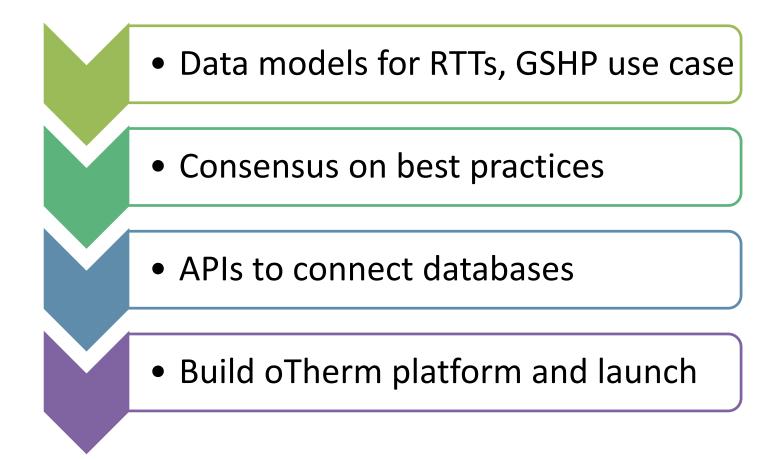
- Heat pump
 - Operating within expected ranges
- Ground loop:
 - Lower than expected thermal K
 - Low borehole resistance (good)
- Demand
 - Homeowner does not use AC
 - Higher than expected heating load on ground loop

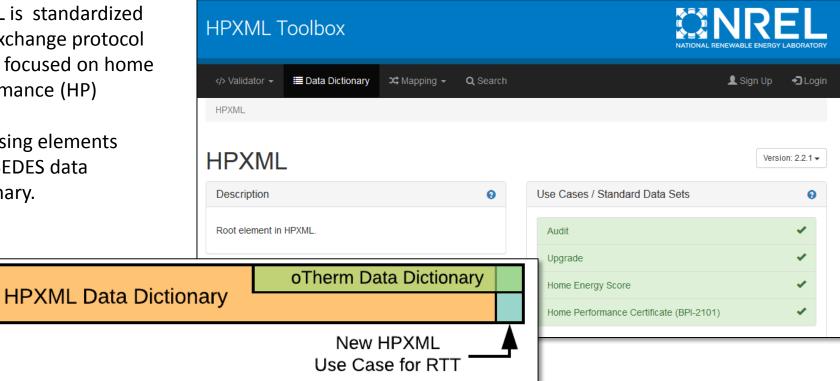
Challenges with Commercial GSHP Applications


- GES monitoring five commercial-scale buildings
 - Mixed Residential-Commercial Building (New)
 - Distributed heat pumps (10), large pumping penalty
 - Town Library (Retrofit)
 - Centralized heat pumps (2 10-ton units)
 - County Correctional Facility (New)
 - Centralized 'multi-stack' (12 10-ton units), intermingling of propane backup may be an issue
 - Multi-story climate-controlled self storage (New)
 - Distributed water-to-air heat pumps (9), highly efficient pumping, no back-up system.
 - Multi-unit (multistory) low-income housing (New)
 - Distributed water-to-air heat pumps (~40) make it difficult to quantify usage/savings.
- Highly variable design, installation, operation


Challenges with Heat Meters in RTT systems

Onicon System 10 Heat Meter – One of the Best on the Market

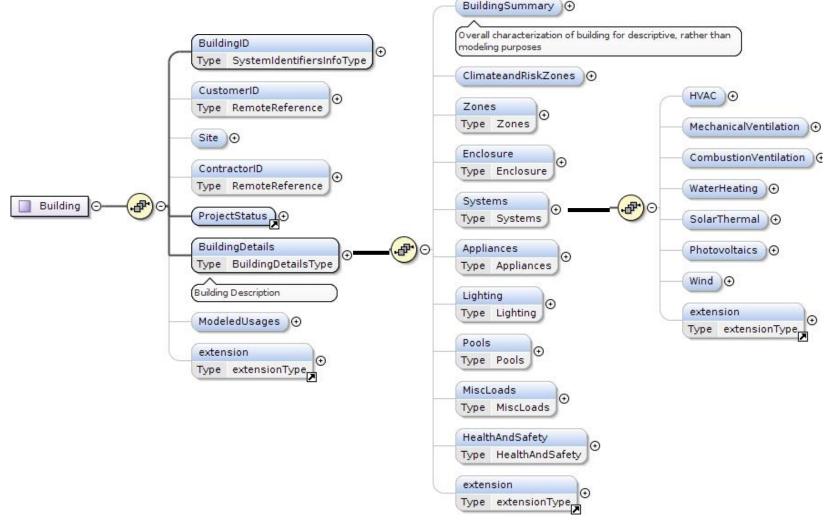


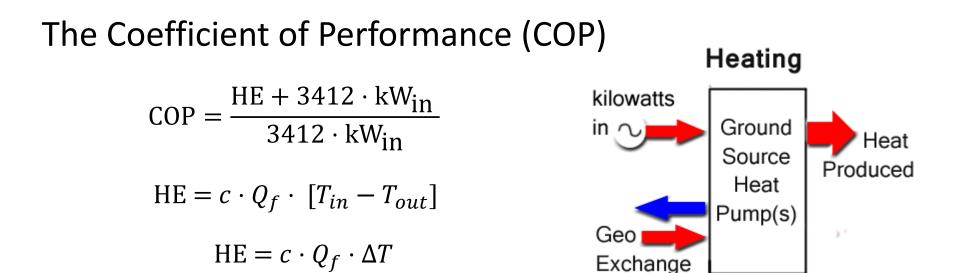


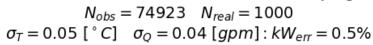
Conclusions

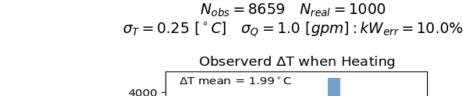
- Performance verification is needed to build confidence and demonstrate benefits.
- Efforts should focus on factors that are both measureable and provide insight.
- Small systems may more amenable to standardized approach.
- oTherm initiative is a community-driven effort standardize data dictionaries and aggregate data.

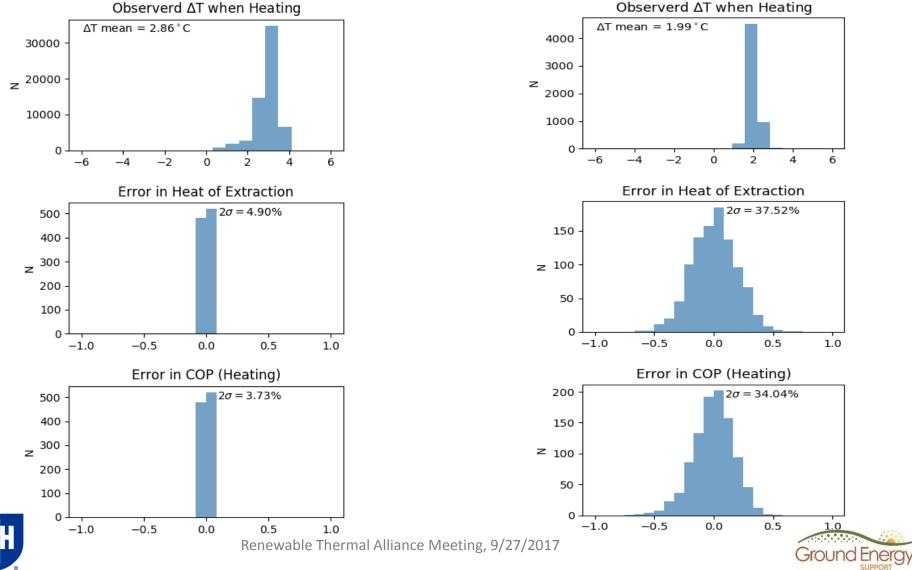
HPXML is standardized data exchange protocol (XML), focused on home performance (HP)


Built using elements from **BEDES** data Dictionary.




Sources of Error when calculating COP


- Temperature (ΔT)
 GeoExchange (HE)
- Ground loop flowrate (Q_f)
- kW (compressor and electric auxiliary)
- kW (circulating pumps, fans)



Measurement Error Model

Propagation of Sensor Errors

