Urban Systems Research PI: Tianzhen Hong, Lead Developer: Yixing Chen Speaker: Han Li

Building Technology and Urban Systems Division June 19, 2018

Transforming Cities

Cities drive our economy and dominate energy and environmental challenges

How to reduce 50% energy use in city building stock?

- Buildings in cities consume 30-70% of the primary energy
- Cities have different building energy use profiles
- The building sector has the most potential to save energy

City Energy Profiles

Imagine a City...

...that consumes 50% less total energy per person while improving economic vitality and quality of life and increasing resilience and sustainability

Support cities on decision making for meeting the 80 X 50 goal

- Support building energy disclosure ordinance: building energy visualization and benchmarking
- Prioritize building retrofit investment: quantitative modeling and analysis
- Track and report building performance (energy use and GHG emissions)
- Inform policy and evaluation: incentives/rebates, climate change, heat waves
- Guide urban energy planning: ZNE communities, smart energy districts

Our Partners / Collaborators

- Cities: San Francisco, Oakland, San Jose, Los Angeles
- Developers: FivePoint
- DOE labs: ANL, NREL, ORNL, PNNL
- NIST Global City Teams Challenge
- Organizations: NYSERDA, RTA, C40, USDN, Smart Cities Council, IEA EBC
- **Universities**: UCB, EPFL, Darmstadt, Tsinghua,
- Companies: SideWalk Labs, Autodesk, MEP Associates, Integral Group

CityBES.LBL.gov (A Platform for City Buildings)

Integrating City Data in Open Standards

ENERGY TECHNOLOGIES AREA

BERKELEY LAB

CityBES Workflow and Use Cases

Evaluate building retrofits at large scale: 940 office and retail buildings in Northeast San Francisco

SF building energy ordinance

https://citybes.lbl.gov/?sf_ecbo=1

Benchmarking Performance of City Buildings

Comparing site EUI of 522 office buildings in San Francisco with 63503 office buildings in the BPD.

Evaluate Rooftop PV Potential

CityBES Start District Buildings Bend	chmarking Retrofit Scenarios	Renewables District Energy Simulate Team	CityBES Start District Buildings	Benchmarking Retrofit Scenarios Renewables District Ene	ergy Simulate Team
Renewables: Photovol This feature estimate the energy generation of th Please specify the area for PV and modify the pre-	taic (PV) he photovoltaic (PV) energy systems arameters of a PV module in the follo	wing panels.	Show Duaking Filters Hide Building Coloring Options Parameter Options Result options Photovoltaics Potential		Q # # [] ?
Parameters of a PV module (Availa	ble from manufacturer's spe	cifications)	Color Buildings by PV Generated Energy Intensity	y V V	a star
Cell Type	CrystallineSilicon		Current result option		
Number of cells in a module	60			a for the second	
Current at maximum power (A)	7.5	Cell Cell	U Show Debug Options		
Voltage at maximum power (V)	30	Module			
Short circuit current (A)	8.3	Fig. Illustration of a PV system: Cell=>Module=>Array		COLUMN AND AND	
Open circuit voltage (V)	36.4				
Area of the PV module (m ²)	1.65				MARKIN 24
				SIS 14 AN	HALO STOR
Area for PV					
Percentage of roof area for PV (%)		60			PV Generated Energy Intensity Unit: kWh/m ² (reof
Tilt angle from horizontal (degree)		31.8	Roof Area (m2)	PV Generated Energy (GWh) =	area)
Orientation		South •	Small Office 12.0% Medium Office 2.6% Large Office 2.6%	13.9% 7.0% 14.7% 2.2% 13.6%	97 97 107
			Small Retail 5.6.% Medium Retail 5.6.% Full Service Restaurant 9.9.%	5/A	116 126 135
Click the Calculate Photovoltaic Potential butt	ton below to start the simulation.		Large Hotel 47.5 x	49.25	144 154 163
Calculate Photovoltaic Potential			Total: 014 762 m2	Total: 127 2 GMb	173 182 191
				I I I I I I I I I I I I I I I I I I I	

Evaluate the photovoltaic potential of 8,665 buildings in Northeast San Francisco

District Energy (A feature in development)

Load profile inputs

Load profile & heat recovery potential visualization

District systems assumptions

Future of CityBES (A submitted DOE proposal)

Publications

- 1. Y. Chen, T. Hong, M.A. Piette. Automatic Generation and Simulation of Urban Building Energy Models Based on City Datasets for City-Scale Building Retrofit Analysis. **Applied Energy**, 2017.
- 2. R.Z. Pass, M. Wetter, M.A. Piette. A thermodynamic analysis of a novel bidirectional district heating and cooling network, **Energy**, 2017.
- 3. C. Weissmann, T. Hong, C.A. Graubner. Analysis of heating load diversity in German residential districts and implications for the applications in district heating systems. **Energy and Buildings**, 2017.
- 4. J. An, D. Yan, T. Hong, K. Sun. A novel stochastic modeling method to simulate cooling loads in residential districts. **Applied Energy**, 2017.
- B. van der Heijde, M. Fuchs, C.R. Tugores, G. Schweiger, K. Sartor, D. Basciotti, D. Müller, C. Nytsch-Geusen, M Wetter and L. Helsen. Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems. Energy Conversion and Management, 151:158-169, 2017.
- 6. F. Buenning, M. Wetter, M. Fuchs, D. Mueller. Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization. **Applied Energy**. 2017.
- 7. Y. Chen, T. Hong. Impacts of Building Geometry Modeling Methods on the Simulation Results of Urban Building Energy Models. **Applied Energy**, 2018.
- 8. Y. Chen, T. Hong, M.A. Piette. City-Scale Building Retrofit Analysis: A Case Study using CityBES. IBPSA Building Simulation Conference, San Francisco, August 2017.
- 9. T. Hong, Y. Chen, S.H. Lee, M.A. Piette. CityBES: A Web-based platform to support city-scale building energy efficiency. Urban Computing, August 2016, San Francisco.
- 10.R.Z. Pass, M. Wetter, M.A. Piette. A Tale of Three District Energy Systems: Metrics and Future Opportunities, ACEEE Summer Study Conference, 2016.

Acknowledgments

- The work is funded by Lawrence Berkeley National Laboratory through the Laboratory Directed Research and Development (LDRD) Program.
- This work was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
- City of San Francisco, Department of the Environment and Department of Technology, provides the building datasets and support in the development of the San Francisco CityGML city models.
- Research team: Mary Ann Piette, Xuan Luo, Han Li

Thank You

Han Li, Scientific Engineering Associate Building Technology Department <u>hanli@lbl.gov</u>; (510) 486-7082 <u>CityBES.LBL.gov</u>

